3,098 research outputs found

    Plasma and cavitation dynamics during pulsed laser microsurgery in vivo

    Full text link
    We compare the plasma and cavitation dynamics underlying pulsed laser microsurgery in water and in fruit fly embryos (in vivo) - specifically for nanosecond pulses at 355 and 532 nm. We find two key differences. First, the plasma-formation thresholds are lower in vivo - especially at 355 nm - due to the presence of endogenous chromophores that serve as additional sources for plasma seed electrons. Second, the biological matrix constrains the growth of laser-induced cavitation bubbles. Both effects reduce the disrupted region in vivo when compared to extrapolations from measurements in water.Comment: 9 pages, 5 figure

    Waiver of Ohio Dead Man Statute

    Get PDF

    A Super-Fast Distributed Algorithm for Bipartite Metric Facility Location

    Full text link
    The \textit{facility location} problem consists of a set of \textit{facilities} F\mathcal{F}, a set of \textit{clients} C\mathcal{C}, an \textit{opening cost} fif_i associated with each facility xix_i, and a \textit{connection cost} D(xi,yj)D(x_i,y_j) between each facility xix_i and client yjy_j. The goal is to find a subset of facilities to \textit{open}, and to connect each client to an open facility, so as to minimize the total facility opening costs plus connection costs. This paper presents the first expected-sub-logarithmic-round distributed O(1)-approximation algorithm in the CONGEST\mathcal{CONGEST} model for the \textit{metric} facility location problem on the complete bipartite network with parts F\mathcal{F} and C\mathcal{C}. Our algorithm has an expected running time of O((loglogn)3)O((\log \log n)^3) rounds, where n=F+Cn = |\mathcal{F}| + |\mathcal{C}|. This result can be viewed as a continuation of our recent work (ICALP 2012) in which we presented the first sub-logarithmic-round distributed O(1)-approximation algorithm for metric facility location on a \textit{clique} network. The bipartite setting presents several new challenges not present in the problem on a clique network. We present two new techniques to overcome these challenges. (i) In order to deal with the problem of not being able to choose appropriate probabilities (due to lack of adequate knowledge), we design an algorithm that performs a random walk over a probability space and analyze the progress our algorithm makes as the random walk proceeds. (ii) In order to deal with a problem of quickly disseminating a collection of messages, possibly containing many duplicates, over the bipartite network, we design a probabilistic hashing scheme that delivers all of the messages in expected-O(loglogn)O(\log \log n) rounds.Comment: 22 pages. This is the full version of a paper that appeared in DISC 201

    Waiver of Ohio Dead Man Statute

    Get PDF

    Therapeutic potential of interferon-gamma in tuberculosis

    Get PDF
    Tuberculosis is one of the critical health problems worldwide. The search for ways to improve the results of tuberculosis treatment and overcome drug resistance lies in understanding the pathogenesis of the development of the infectious process. The interferon system, particularly the role of interferon-gamma, has been identified as the main link in the immune response in tuberculosis. The clinical efficacy of interferon-gamma has been studied and evaluated in clinical trials since the end of the last century. There was obtained evidence of the clinical efficacy of interferon-gamma as part of complex therapy. Recent experimental data make it possible to consider interferon-gamma as a promising therapeutic option for the treatment of multidrug-resistant tuberculosis as part of complex therapy worthy of further studies
    corecore